Acta Cryst. (1996). C52, 808-810

Dichlorobis(nicotinamide-N¹-acetate-O)zinc(II)

Vladimír Zeleňák, a Katarína Györyová, a Ivana Císařová b and Josef Loub b

^aDepartment of Inorganic Chemistry, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia, and ^bDepartment of Inorganic Chemistry, Charles University, Hlavova 2030, Praha 2, Czech Republic. E-mail: zelenak@kosice.upjs.sk

(Received 19 April 1995; accepted 6 November 1995)

Abstract

The structure of $[ZnCl_2(C_8H_8N_2O_3)_2]$ containing the zwitterionic nicotinamide- N^1 -acetate ligand (3-carbamoylpyridinium-1-acetate) is described. The complex has slightly distorted tetrahedral geometry involving two Cl atoms [Zn-Cl 2.245(1) Å] and two carboxy O atoms [Zn-O 2.014(1) Å]. Molecules of the complex are connected by intermolecular hydrogen bonds of the type N-H···O, with N···O distances of 2.868(3) and 3.030(2) Å.

Comment

In the course of our continuing investigation of zinc(II) formates and acetates containing additional organic ligands (Györyová, Balek & Zeleňák, 1994; Györyová & Balek, 1993), with antifungal and antibacterial activity (Petrič, Györyová, Skoršepa & Melník, 1995), we isolated the compound dichlorobis(nicotinamide- N^1 -acetate)zinc(II), (I), containing the zwitterionic nicotinamide- N^1 -acetate ligand, as a product of the reaction of zinc(II) chloroacetate with nicotinamide.

The complex units of (I) have slightly distorted tetrahedral geometry, the coordination sphere consisting of two O atoms from zwitterionic nicotinamide- N^{l} -acetate ligands and two chloro ligands, with the Zn centre lying on the crystallographic twofold rotation axis.

The distance from the carboxylate C atom to the O atom bonded to the metal $[C-O1 \ 1.268 \ (2) \ Å]$ is slightly longer than the distance to the unbonded carboxylate O atom $[C-O2 \ 1.224 \ (2) \ Å]$ owing to the

greater double-bond character in the latter case. The unbonded carboxylate O atom is involved in a weak Zn···O interaction [2.898 (2) Å]. This interaction may determine the orientation of the carboxy group. The pyridine ring is approximately orthogonal to the carboxy group [C1—C2—N1—C7 101.5 (2)°]. The N1—C2 bond is synperiplanar to the C1—O1 bond and antiperiplanar to the C1—O2 bond [N1—C2—C1—O1 and N1—C2—C1—O2 are 0.0 (3) and $-178.0 (2)^\circ$, respectively].

The Zn—O bond lengths [2.014(1) Å] are longer than those observed for the analogous complex $[\text{ZnBr}_2(\text{CONH}_2\text{C}_5\text{H}_4\text{N}^+\text{CH}_2\text{COO}^-)_2]$ [2.005(2) Å; Zeleňák, Györyová & Císařová, 1995] or another complex with a zwitterionic carboxylate ligand, dichlorobis-(pyridine betaine)zinc(II) [Zn—O 1.988(3), 1.964(2) Å; Chen & Mak, 1991].

Zn—Cl distances [2.245(1) Å] are longer compared with those in dichlorobis(pyridine betaine)zinc(II) [2.238(2), 2.262(1) Å; Chen & Mak, 1991]. The Zn— X distance in the series of complexes of the type $[ZnX_2(CONH_2C_5H_4N^+CH_2COO^-)_2]$, where X = Cl, Br, increases with covalent radius of the coordinated halogen ligand.

Fig. 1. View of [ZnCl₂(CONH₂C₅H₄N*CH₂COO⁻)₂]. Displacement ellipsoids are plotted at the 50% probability level.

N1 C4

C7

C8 C5 C6 C2

> O3 N2

The molecules are stabilized by intermolecular hydrogen bonds between carboxylate and amino groups (Table 3).

Experimental

Synthesis was carried out by reaction of zinc(II) chloroacetate and nicotinamide (molar ratio 1:2) in aqueous solution at 333 K. The reaction mixture was filtered then the solvent was allowed to evaporate slowly at room temperature. After several days colourless transparent crystals were isolated.

Mo $K\alpha$ radiation

Cell parameters from 25

 $0.43 \times 0.43 \times 0.32$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\theta = 19.0-20.5^{\circ}$ $\mu = 1.634 \text{ mm}^{-1}$

T = 293 (2) K

Hexagonal

Colourless

Crystal data

$[ZnCl_2(C_8H_8N_2O_3)_2]$
$M_r = 496.60$
Monoclinic
C2/c
a = 13.7180(10) Å
<i>b</i> = 7.4307 (3) Å
c = 18.4638(9) Å
$\beta = 91.524(5)^{\circ}$
V = 1881.4 (2) Å ³
Z = 4
$D_x = 1.753 \text{ Mg m}^{-3}$

Data collection CAD-4-MACHIII-PC

CAD-4-MACHIII-PC
diffractometer $R_{int} = 0.0252$
 $\theta_{max} = 25.97^{\circ}$
 $h = -16 \rightarrow 16$ $\omega - 2\theta$ scans $h = -16 \rightarrow 16$ Absorption correction:
none $k = -9 \rightarrow 9$
 $l = 0 \rightarrow 22$ 3539 measured reflections
1847 independent reflections
1689 observed reflections
 $[I > 3\sigma(I)]$ 3 standard reflections
intensity decay: 3.4%

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.375 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.0234$	$\Delta \rho_{\rm min} = -0.307 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0617$	Extinction correction:
S = 1.061	SHELXL93 (Sheldrick,
1847 reflections	1993)
165 parameters	Extinction coefficient:
All H-atom parameters	0.0176 (7)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.0277P)^2]$	from International Tables
+ 2.3853P]	for Crystallography (1992,
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} < 0.001$	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$$

	x	у	z	U_{eq}
Zn	0	0.28976 (4)	1/4	0.02388(13)
Cl	0.09251 (4)	0.46841 (8)	0.18183 (3)	0.0413 (2)
01	0.08051 (10)	0.1275 (2)	0.31528 (7)	0.0298 (3)
C1	0.11258 (13)	-0.0071 (3)	0.28108 (10)	0.0287 (4)
O2	0.11736 (13)	-0.0212(2)	0.21520 (8)	0.0512(5)
C3	0.20289 (13)	-0.0549 (2)	0.44047 (10)	0.0246 (4)

0.13582(11)	-0.1520(2)	0.40322 (8)	0.0258 (3)
0.19656(12)	-0.0316 (2)	().51406 (9)	0.0224 (4)
0.06056 (14)	-0.2294 (3)	0.43696 (11)	0.0325 (4)
0.27770(13)	0.0764 (3)	0.54986 (10)	0.0269 (4)
0.12015 (13)	-0.1120 (3)	0.54967 (10)	0.0283 (4)
0.05212 (14)	-0.2117 (3)	0.51026 (12)	0.0344 (4)
0.1457 (2)	-0.1714 (3)	0.32411 (10)	0.0337 (5)
0.34648 (10)	0.1224 (2)	0.51331 (8)	0.0401 (4)
0.2713 (2)	0.1124 (3)	0.61971 (10)	0.0400 (4)

Table 2. Selected geometric parameters (Å, °)

Zn-Ol	2.014(1)	N1C2	1.478 (2)
ZnCl	2.245(1)	C4—C5	1.387 (2)
01C1	1.268 (2)	C4—C8	1.510(2)
C1O2	1.224 (2)	C7—C6	1.368 (3)
C1—C2	1.519 (3)	C8O3	1.223 (2)
C3—N1	1.344 (2)	C8—N2	1.322 (3)
C3C4	1.375 (2)	C5—C6	1.383 (3)
N1C7	1.349 (3)		
01-Zn-O1	106.44 (8)	C7—N1—C2	120.4 (2)
O1—Zn—Cl	112.35 (4)	C3C4C5	118.9 (2)
O1—Zn—Cl ⁱ	109.12 (4)	C3-C4-C8	115.7 (2)
Cl—Zn—Cl ⁱ	107.52 (3)	C5-C4-C8	125.4 (2)
C1-O1-Zn	111.48 (11)	N1C7C6	120.1 (2)
O2C1O1	126.2 (2)	O3C8N2	123.6 (2)
O2-C1-C2	115.3 (2)	O3C8C4	118.5 (2)
01C1C2	118.4 (2)	N2	117.8 (2)
N1C3C4	120.9 (2)	C6C5C4	119.3 (2)
C3-N1-C7	121.0 (2)	C7C6C5	119.9 (2)
C3-N1-C2	118.6(2)	N1C2C1	113.9 (2)

Symmetry code: (i) -x, y, $\frac{1}{2} - z$.

Table 3. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
N2H7···O2 ⁱ	0.85 (3)	2.02 (3)	2.868 (3)	176 (3)
N2—H8· · ·O1 [#]	0.82 (3)	2.20 (3)	3.030(2)	175 (3)
Symmetry codes: (i	$(x, -y, \frac{1}{2} + z;$	(ii) $\frac{1}{2} - x$,	$\frac{1}{2} - y, 1 - z.$	

The Zn and Cl atoms were located from a Patterson synthesis and remaining non-H atoms from weighted Fourier syntheses. Anisotropic displacement parameters were refined for all non-H atoms. All H atoms were located from difference syntheses and allowed to refine freely with individual isotropic displacement parameters.

Data collection: CAD-4 diffractometer system. Cell refinement: CAD-4 diffractometer system. Data reduction: CAD-4 diffractometer system. Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *OR-TEP* (Johnson, 1965). Software used to prepare material for publication: *SHELXL*93 (Sheldrick, 1993).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1184). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Chen, X.-M. & Mak, C. W. (1991). Inorg. Chim. Acta, 182, 139-144. Györyová, K. & Balek, V. (1993). J. Therm. Anal. 40, 519-532.

- Györyová, K., Balek, V. & Zeleňák, V. (1994). Thermochim. Acta,
- **234**, 221–229.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Zeleňák, V., Györyová, K. & Císařová, I. (1995). Main Group Met. Chem. 18, 211-216.
- Petrič, M., Györyová, K., Skoršepa, J. & Melník, M. (1995). In preparation

Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Zeleňák, V., Györyová, K. & Císařová, I. (1995). Main Group Met. Chem. 18, 211-216.

Acta Cryst. (1996). C52, 810-812

Diaqua(2-ethylphenyliminodiacetato-*N*,*O*,*O*')**zinc**(**II**)

MIGUEL A. HIDALGO,^{a*} JOSÉ SUÁREZ-VARELA,^b JUAN C. AVILA-ROSÓN,^c JOSÉ D. MARTÍN-RAMOS^d AND ANTONIO ROMEROSA^e

^aCentro de Instrumentación Científica, Universidad de Granada, 18071 Granada, Spain, ^bDepartamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain, ^cDepartamento de Química Analítica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain, ^dDepartamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain, and ^eDepartamento de Química Inorgánica, Facultad de Ciencias Experimentales, Universidad de Almería, 04071 Almería, Spain. E-mail: mhidalgo@goliat.ugr.es

(Received 23 May 1995; accepted 11 October 1995)

Abstract

The title complex, $[Zn(C_{12}H_{13}NO_4)(H_2O)_2]$, has a coordination polyhedron around the Zn^{II} atom that can be described as a square-based pyramid strongly distorted towards a trigonal bipyramid. The basal plane is defined by one N and two O atoms belonging to the tridentate ligand and one water O atom, while the axial position is occupied by another water O atom. The discrete molecules are grouped through hydrogen bonding into parallel double layers with the phenyl groups pointing outwards.

Comment

The crystal structure of the title zinc complex, (I), is made up of discrete neutral $[Zn(L)(H_2O)_2]$ molecules, H_2L being 2-ethylphenyliminodiacetic acid. These discrete molecules are assembled through hydrogen bonds into double chains along the *b* axis. The chains are then linked by means of further hydrogen bonds giving parallel double layers with phenyl groups pointing outwards. The layers, lying in *bc* planes, are stacked in an eggcarton fashion, by means of the phenyl groups, resulting in a close-packed arrangement.

(I)

H₂O

OH,

Fig. 1. ORTEP drawing (Johnson, 1965) of the title molecule. Ellipsoids are drawn at the 50% probability level.

The coordination environment around the Zn atom is, therefore, made up of four short bonds of around 2.0 Å involving the four O atoms and a longer bond of 2.258 (4) Å formed with the N atom of the ligand. This geometry may be described as an intermediate member of the continuous series between square-based pyramidal and trigonal-bipyramidal geometries. The dis-

> Acta Crystallographica Section C ISSN 0108-2701 © 1996